4.3 Article

Properties and phenomena relevant to CH4-CO2 replacement in hydrate-bearing sediments

Journal

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2009JB000812

Keywords

-

Funding

  1. U.S. Department of Energy
  2. Goizueta Foundation

Ask authors/readers for more resources

The injection of carbon dioxide, CO2, into methane hydrate-bearing sediments causes the release of methane, CH4, and the formation of carbon dioxide hydrate, even if global pressure-temperature conditions remain within the CH4 hydrate stability field. This phenomenon, known as CH4-CO2 exchange or CH4-CO2 replacement, creates a unique opportunity to recover an energy resource, methane, while entrapping a greenhouse gas, carbon dioxide. Multiple coexisting processes are involved during CH4-CO2 replacement, including heat liberation, mass transport, volume change, and gas production among others. Therefore, the comprehensive analysis of CH4-CO2 related phenomena involves physico-chemical parameters such as diffusivities, mutual solubilities, thermal properties, and pressure-and temperature-dependent phase conditions. We combine new experimental results with published studies to generate a data set we use to evaluate reaction rates, to analyze underlying phenomena, to explore the pressure-temperature region for optimal exchange, and to anticipate potential geomechanical implications for CH4-CO2 replacement in hydrate-bearing sediments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available