4.6 Article

Correlated digital back propagation based on perturbation theory

Journal

OPTICS EXPRESS
Volume 23, Issue 11, Pages 14655-14665

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.23.014655

Keywords

-

Categories

Ask authors/readers for more resources

We studied a simplified digital back propagation (DBP) scheme by including the correlation between neighboring signal samples. An analytical expression for calculating the correlation coefficients is derived based on a perturbation theory. In each propagation step, nonlinear distortion due to phase-dependent terms in the perturbative expansion are ignored which enhances the computational efficiency. The performance of the correlated DBP is evaluated by simulating a single-channel single-polarization fiber-optic system operating at 28 Gbaud, 32-quadrature amplitude modulation (32-QAM), and 40 x 80 km transmission distance. As compared to standard DBP, correlated DBP reduces the total number of propagation steps by a factor of 10 without performance penalty. Correlated DBP with only 2 steps per link provides about one dB improvement in Q-factor over linear compensation. (C) 2015 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available