4.3 Article

Thermal decomposition of carbonates in fault zones: Slip-weakening and temperature-limiting effects

Journal

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2008JB006004

Keywords

-

Ask authors/readers for more resources

During an earthquake, the heat generated by fault friction may be large enough to activate the devolatilization of minerals forming the fault rocks. In this paper, we model the mechanical effects of calcite thermal decomposition on the slip behavior of a fault zone during an earthquake. To do so, we introduce the coupled effects of calcite volume loss, heat consumption, and CO2 production in the theoretical analysis of shear heating and thermal pressurization of pore fluids. We consider a rapidly deforming shear band consisting of a fluid-saturated carbonate rock. The equations that govern the evolution of pore pressure and temperature inside the band and the mass of emitted CO2 are deduced from the mass and energy balance of the multiphase-saturated medium and from the kinetics of the chemical decomposition of calcite. Numerical simulation of seismic slip at depths of 5 to 8 km show that decarbonation has two critical consequences on fault slip. First, the endothermic reaction of calcite decomposition limits the coseismic temperature increase to less than similar to 800 degrees C (corresponding to the initiation of the chemical reaction) inside the shear band. Second, the rapid emission of CO2 by decarbonation significantly increases the slip-weakening effect of thermal pressurization. The pore pressure reaches a maximum and then decreases due to the reduction of solid volume, causing a restrengthening of shear stress. Our theoretical study shows, on the example of decarbonation, that the thermal decomposition of minerals is an important slip-weakening process and that a large part of the frictional heat of earthquakes may go into endothermic devolatilization reactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available