4.3 Article

Geomagnetic perturbations on stratospheric circulation in late winter and spring

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
Volume 113, Issue D16, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2007JD008915

Keywords

-

Funding

  1. Natural Environment Research Council [bas010022] Funding Source: researchfish
  2. NERC [bas010022] Funding Source: UKRI

Ask authors/readers for more resources

[1] This study investigates if the descent of odd nitrogen, generated in the thermosphere and the upper mesosphere by energetic particle precipitation (EPP-NOx), has a detectable impact on stratospheric wind and temperature in late winter and spring presumably through the loss of ozone and reduction of absorption of solar UV. In both hemispheres, similar downward propagating geomagnetic signals in the extratropical stratosphere are found in spring for those years when no stratospheric sudden warming occurred in mid-winter. Anomalous easterly winds and warmer polar regions are found when the 4-month averaged winter Ap index ( Ap) is high, and the signals become clearer when solar F10.7 is low. In May, significant geomagnetic signals are obtained in the Northern Hemisphere when the data are grouped according to the phase of the stratospheric equatorial QBO. The magnitudes of changes in spring stratospheric wind and temperatures associated with A(p) signals are in the range of 10-20 m s(-1) and 5-10 K, which are comparable with those of the 11-yr SC signals typically found in late winter. The spring A(p) signals show the opposite sign to that expected due to in situ cooling effects caused by catalytic destruction of stratospheric ozone by descending EPP-NOx. Thus it is unlikely that the in situ chemical effect of descending EPP-NOx on stratospheric ozone would have a dominant influence on stratospheric circulation. Instead, we suggest that the detected A(p) signals in the extratropical spring stratosphere may be an indirect consequence of geomagnetic and solar activity, dynamically induced by changes in wave ducting conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available