4.3 Article

Dynamic response of oceanic hydrate deposits to ocean temperature change

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
Volume 113, Issue C12, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2008JC004938

Keywords

-

Categories

Funding

  1. Laboratory Directed Research and Development (LDRD)
  2. Director, Office of Science, of the U. S. Department of Energy (DoE) [DE-AC02-05CH11231]
  3. Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology

Ask authors/readers for more resources

Vast quantities of methane are trapped in oceanic hydrate deposits. Because methane is a powerful greenhouse gas (about 26 times more effective than CO2), there is considerable concern that a rise in the temperature of the oceans will induce dissociation of oceanic hydrate accumulations, potentially releasing large amounts of carbon into the atmosphere. Such a release could have dramatic climatic consequences because it could amplify atmospheric and oceanic warming and possibly accelerate dissociation of the remaining hydrates. This study assesses the stability of three types of hydrates (case I, deep-ocean deposits; case II, shallow, warm deposits; and case III, shallow, cold deposits) and simulates the dynamic behavior of these deposits under the influence of moderate ocean temperature increases. The results indicate that deep-ocean hydrates are stable under the influence of moderate increases in ocean temperature; however, shallow deposits can be very unstable and release significant quantities of methane under the influence of as little as 1 degrees C of seafloor temperature increase. Less permeable sediments, or burial underneath layers of hydrate-free sediment, affect both the rate of hydrate dissociation and methane transport to the seafloor but may not prevent methane release. Higher-saturation deposits can produce larger methane fluxes with the thermodynamics of hydrate dissociation retarding the rate of recession of the upper hydrate interface. These results suggest possible worst case scenarios for climate-change-induced methane release and point toward the need for detailed assessment of the hydrate hazard and the coupling of hydrate-derived methane to regional and global ecosystems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available