4.7 Article

Achievements of the Earth orientation parameters prediction comparison campaign

Journal

JOURNAL OF GEODESY
Volume 84, Issue 10, Pages 587-596

Publisher

SPRINGER
DOI: 10.1007/s00190-010-0387-1

Keywords

Earth orientation parameters; Predictions; Combined solution; Polar motion; UT1; Universal time

Funding

  1. Advisory Board of the Descartes-nutation project

Ask authors/readers for more resources

Precise transformations between the international celestial and terrestrial reference frames are needed for many advanced geodetic and astronomical tasks including positioning and navigation on Earth and in space. To perform this transformation at the time of observation, that is for real-time applications, accurate predictions of the Earth orientation parameters (EOP) are needed. The Earth orientation parameters prediction comparison campaign (EOP PCC) that started in October 2005 was organized for the purpose of assessing the accuracy of EOP predictions. This paper summarizes the results of the EOP PCC after nearly two and a half years of operational activity. The ultra short-term (predictions to 10 days into the future), short-term (30 days), and medium-term (500 days) EOP predictions submitted by the participants were evaluated by the same statistical technique based on the mean absolute prediction error using the IERS EOP 05 C04 series as a reference. A combined series of EOP predictions computed as a weighted mean of all submissions available at a given prediction epoch was also evaluated. The combined series is shown to perform very well, as do some of the individual series, especially those using atmospheric angular momentum forecasts. A main conclusion of the EOP PCC is that no single prediction technique performs the best for all EOP components and all prediction intervals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available