4.1 Article

Dynamic QTL and epistasis analysis on seedling root traits in upland cotton

Journal

JOURNAL OF GENETICS
Volume 93, Issue 1, Pages 63-78

Publisher

INDIAN ACAD SCIENCES
DOI: 10.1007/s12041-014-0341-8

Keywords

root development; QTLs; upland cotton

Funding

  1. National High Technology Research and Development Programme [2011AA10A102]
  2. New Century Excellent Talents of the Ministry of Education [NCET-06-0106]

Ask authors/readers for more resources

Roots are involved in acquisition of water and nutrients, as well as in providing structural support to plant. The root system provides a dynamic model for developmental analysis. Here, we investigated quantitative trait loci (QTL), dynamic conditional QTL and epistatic interactions for seedling root traits using an upland cotton F-2 population and a constructed genetic map. Totally, 37 QTLs for root traits, 35 dynamic conditional QTLs based on the net increased amount of root traits (root tips, forks, length, surface area and volume) (i) after transplanting 10 days compared to 5 days, and (ii) after transplanting 15 days to 10 days were detected. Obvious dynamic characteristic of QTL and dynamic conditional QTL existed at different developmental stages of root because QTL and dynamic conditional QTL had not been detected simultaneously. We further confirmed that additive and dominance effects of QTL qRSA-chr1-1 in interval time 5 to 10 DAT (days after transplant) offset the effects in 10 to 15 DAT. Lots of two-locus interactions for root traits were identified unconditionally or dynamically, and a few epistatic interactions were only detected simultaneously in interval time of 5-10 DAT and 10-15 DAT, suggesting different interactive genetic mechanisms on root development at different stages. Dynamic conditional QTL and epistasis effects provide new attempts to understand the dynamics of roots and provide clues for root architecture selection in upland cotton.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available