4.1 Review

RPGR-containing protein complexes in syndromic and non-syndromic retinal degeneration due to ciliary dysfunction

Journal

JOURNAL OF GENETICS
Volume 88, Issue 4, Pages 399-407

Publisher

INDIAN ACAD SCIENCES
DOI: 10.1007/s12041-009-0061-7

Keywords

primary cilia; centrosome; transition zone; ciliopathies; photoreceptor; retinal degeneration; retina; RPGR; RP2; CEP290; RPGRIP1L; NPHP

Funding

  1. National Eye Institute
  2. National Institutes of Health [EY007961]
  3. Foundation Fighting Blindness (FFB)
  4. Midwest Eye Banks and Transplantation Center

Ask authors/readers for more resources

Dysfunction of primary cilia due to mutations in cilia-centrosomal proteins is associated with pleiotropic disorders. The primary (or sensory) cilium of photoreceptors mediates polarized trafficking of proteins for efficient phototransduction. Retinitis pigmentosa GTPase regulator (RPGR) is a cilia-centrosomal protein mutated in >70% of X-linked RP cases and 10%-20% of simplex RP males. Accumulating evidence indicates that RPGR may facilitate the orchestration of multiple ciliary protein complexes. Disruption of these complexes due to mutations in component proteins is an underlying cause of associated photoreceptor degeneration. Here, we highlight the recent developments in understanding the mechanism of cilia-dependent photoreceptor degeneration due to mutations in RPGR and RPGR-interacting proteins in severe genetic diseases, including retinitis pigmentosa, Leber congenital amaurosis (LCA), Joubert syndrome, and Senior-Loken syndrome, and explore the physiological relevance of photoreceptor ciliary protein complexes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available