4.4 Article

Mutation analysis of the cross-reactive epitopes of Japanese encephalitis virus envelope glycoprotein

Journal

JOURNAL OF GENERAL VIROLOGY
Volume 93, Issue -, Pages 1185-1192

Publisher

MICROBIOLOGY SOC
DOI: 10.1099/vir.0.040238-0

Keywords

-

Funding

  1. National Science Council, Taiwan [NSC 96-2313-B-005-023-MY3]

Ask authors/readers for more resources

Group and serocomplex cross-reactive epitopes have been identified in the envelope (E) protein of several flaviviruses and have proven critical in vaccine and diagnostic antigen development. Here, we performed site-directed mutagenesis across the E gene of a recombinant expression plasmid that encodes the Japanese encephalitis virus (JEV) premembrane (prM) and E proteins and produces JEV virus-like particles (VLPs). Mutations were introduced at 1135 and E138 in domain I; W101, G104, G106 and L107 in domain II; and T305, E306, K312, A315, S329, S331, G332 and D389 in domain III. None of the mutant JEV VLPs demonstrated reduced activity to the five JEV type-specific mAbs tested. Substitutions at W101, especially W101G, reduced reactivity dramatically with all of the flavivirus group cross-reactive mAbs. The group and JEV serocomplex cross-reactive mAbs examined recognized five and six different overlapping epitopes, respectively. Among five group cross-reactive epitopes, amino acids located in domains 1, II and III were involved in one, five and three epitopes, respectively. Recognition by six JEV serocomplex cross-reactive mAbs was reduced by amino acid substitutions in domains II and III. These results suggest that amino acid residues located in the fusion loop of E domain II are the most critical for recognition by group cross-reactive mAbs, followed by residues of domains III and I. The amino acid residues of both domains II and III of the E protein were shown to be important in the binding of JEV serocomplex cross-reactive mAbs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available