4.4 Article

Hepatitis B virus X protein overcomes all-trans retinoic acid-induced cellular senescence by downregulating levels of p16 and p21 via DNA methylation

Journal

JOURNAL OF GENERAL VIROLOGY
Volume 92, Issue -, Pages 1309-1317

Publisher

MICROBIOLOGY SOC
DOI: 10.1099/vir.0.029512-0

Keywords

-

Funding

  1. Ministry for Health, Welfare & Family Affairs, Republic of Korea [A084399]
  2. Korea Health Promotion Institute [A084399] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Despite current molecular evidence suggesting that hepatitis B virus (HBV) X protein (HBx) plays an important role during HBV-mediated hepatocarcinogenesis, the detailed mechanism is still controversial. Here, it was shown that HBx overcomes cellular senescence provoked by all-trans retinoic acid (ATRA) in HepG2 cells, as demonstrated by the impaired induction of irreversible G(1) arrest and senescence-associated beta-galactosidase activity by ATRA in the presence of HBx. The anti-senescence effect of HBx was also observed in another human hepatoma cell line, Hep3B, but not in Huh-7 cells in which the p16 and p21 proteins are absent. In addition, HBx suppressed ATRA-mediated induction of p16 and p21 in HepG2 cells via promoter hypermethylation, resulting in inactivation of retinoblastoma protein. Furthermore, the ability of HBx to overcome ATRA-induced cellular senescence almost completely disappeared when the levels of p16 and p21 in the HBx-expressing cells became similar to those in the control cells by complementation in the former by exogenous expression, knockdown of their expression in the latter using specific small interfering RNA or treatment with a DNA methylation inhibitor, 5-Aza-2'-deoxycytidine. These results suggest that HBx executes its potential by downregulating levels of p16 and p21 via DNA methylation. As cellular senescence is a tumour-suppression process, the present study provides a new strategy by which HBV promotes hepatocarcinogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available