4.4 Article

Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E

Journal

JOURNAL OF GENERAL VIROLOGY
Volume 89, Issue -, Pages 359-368

Publisher

SOC GENERAL MICROBIOLOGY
DOI: 10.1099/vir.0.83286-0

Keywords

-

Ask authors/readers for more resources

Human cytomegalovirus (HCMV) strain TB40/E, replicates efficiently, exhibits a broad cell tropism and is widely used for infection of endothelial cells and monocyte-derived cells yet has not been available in a phenotypically homogeneous form compatible with genetic analysis. To overcome this problem, we cloned the TB40/E strain into a bacterial artificial chromosome (BAC) vector. Both highly endotheliotropic and poorly endotheliotropic virus clones, representing three distinct restriction fragment patterns, were reconstituted after transfection of BAC clones derived from previously plaque-purified strain TB40/E. For one of the highly endotheliotropic clones, TB40-BAC4, we provide the genome sequence. Two BACs with identical restriction fragment patterns but different cell tropism were further analysed in the UL128-UL131A gene region. Sequence analysis revealed one coding-relevant adenine insertion at position 332 of UL 128 in the BAC of the poorly endotheliotropic virus, which caused a frameshift in the C-terminal part of the coding sequence. Removal of this insertion by markerless mutagenesis; restored the highly endotheliotropic phenotype, indicating that the loss of endothelial cell tropism was caused by this insertion. In conclusion, HCMV strain TB40/E, which combines the high endothelial cell tropism of a clinical isolate with the high titre growth of a cell culture adapted strain, is now available as a BAC clone suitable for genetic engineering. The results also suggest BAC cloning as a suitable method for selection of genetically defined virus clones.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available