4.4 Article

Positively selected sites on the surface glycoprotein (G) of infectious hematopoietic necrosis virus

Journal

JOURNAL OF GENERAL VIROLOGY
Volume 89, Issue -, Pages 703-708

Publisher

SOC GENERAL MICROBIOLOGY
DOI: 10.1099/vir.0.83451-0

Keywords

-

Funding

  1. NATIONAL CENTER FOR RESEARCH RESOURCES [P20RR016454] Funding Source: NIH RePORTER
  2. NCRR NIH HHS [P20 RR16454] Funding Source: Medline

Ask authors/readers for more resources

Mutations in the surface glycoprotein (G) of infectious hematopoietic necrosis virus (IHNV), a rhabdovirus that causes significant losses in hatcheries raising salmonid fish, were studied. A 303 nt segment (mid-G region) of this protein from 88 Idaho isolates of IHNV was sequenced. Evidence of positive selection at individual codon sites was estimated by using a Bayesian method (MrBayes). A software algorithm (CPHmodels) was used to construct a three-dimensional (3D) representation of the IHNV protein. The software identified structural homologies between the IHNV G protein and the surface glycoprotein of vesicular stomatitis virus (VSV) and used the VSV structure as a template for predicting the IHNV structure. The amino acids predicted to be under positive selection were mapped onto the proposed IHNV 3D structure and appeared at sites on the surface of the protein where antigen-antibody interaction should be possible. The sites identified as being under positive selection on the IHNV protein corresponded to those reported by others as active sites of mutation for IHNV, and also as antigenic sites on VSV. Knowledge of the sites where genetic variation is positively selected enables a better understanding of the interaction of the virus with its host, and with the host immune system. This information could be used to develop strategies for vaccine development for IHNV, as well as for other viruses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available