4.3 Article

Model representation of the nonlinear step response in cardiac muscle

Journal

JOURNAL OF GENERAL PHYSIOLOGY
Volume 136, Issue 2, Pages 159-177

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1085/jgp.201010467

Keywords

-

Categories

Funding

  1. National Heart, Lung, and Blood Institute [R01-HL75643, R01-HL80186]
  2. ARCS Fellowship
  3. Poncin Fellowship

Ask authors/readers for more resources

Motivated by the need for an analytical tool that can be used routinely to analyze data collected from isolated, detergent- skinned cardiac muscle fibers, we developed a mathematical model for representing the force response to step changes in muscle length (i.e., quick stretch and release). Our proposed model is reasonably simple, consisting of only five parameters representing: (1) the rate constant by which length change-induced distortion of elastic elements is dissipated; (2) the stiffness of the muscle fiber; (3) the amplitude of length-mediated recruitment of stiffness elements; (4) the rate constant by which this length-mediated recruitment takes place; and (5) the magnitude of the nonlinear interaction term by which distortion of elastic elements affects the number of recruited stiffness elements. Fitting this model to a family of force recordings representing responses to eight amplitudes of step length change (+/- 2.0% baseline muscle length in 0.5% increments) enabled four things: (1) reproduction of all the identifiable features seen in a family of force responses to both positive and negative length changes; (2) close fitting of all records from the whole family of these responses with very little residual error; (3) estimation of all five model parameters with a great degree of certainty; and (4) importantly, ready discrimination between cardiac muscle fibers with different contractile regulatory proteins but showing only subtly different contractile function. We recommend this mathematical model as an analytic tool for routine use in studies of cardiac muscle fiber contractile function. Such model-based analysis gives novel insight to the contractile behavior of cardiac muscle fibers, and it is useful for characterizing the mechanistic effects that alterations of cardiac contractile proteins have on cardiac contractile function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available