4.8 Article

Bimetallic Pd-Cu catalysts for selective CO2 hydrogenation to methanol

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 170, Issue -, Pages 173-185

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcatb.2015.01.010

Keywords

CO2 hydrogenation; Pd-Cu bimetallic catalyst; Methanol; Pd-Cu alloy formation; Support effect

Funding

  1. Pennsylvania State University through the Penn State Institute of Energy and the Environment
  2. Chinese Scholarship Council (CSC)

Ask authors/readers for more resources

This paper reports on novel Pd-Cu bimetallic catalysts for selective CO2 hydrogenation to methanol. Strong synergistic effect on promoting methanol formation was observed over amorphous silica supported Pd-Cu bimetallic catalysts when the Pd/(Pd + Cu) atomic ratios lied in the range of 0.25-0.34. The methanol formation rate over Pd(0.25)-Cu/SiO2 was two times higher than the simple sum of those over monometallic Cu and Pd catalysts. The Pd-Cu bimetallic catalysts were characterized by X-ray diffraction, transmission electron microscopy, scanning transmission electron microscopy coupled with energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and hydrogen temperature-programmed desorption. Detailed characterization results demonstrated the importance of two well-dispersed Pd-Cu alloy particles (PdCu and PdCu3) for the observed methanol promotion over Pd-Cu bimetallic catalysts. Similar bimetallic promotion was also observed for Pd-Cu catalysts supported on uniform mesoporous MCM-41, SBA-15 and MSU-F. Conversion-selectivity profile of the Pd-Cu/SiO2 catalyst suggested that CO2 was a primary carbon source for methanol synthesis at lower CO2 conversion, and byproduct CO contributed at higher CO2 conversion within the conversion range examined. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available