4.6 Article

Oxidative stress and regulation of anti-oxidant enzymes in cytochrome P4502E1 transgenic mouse model of non-alcoholic fatty liver

Journal

JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY
Volume 25, Issue 6, Pages 1136-1143

Publisher

WILEY
DOI: 10.1111/j.1440-1746.2009.06196.x

Keywords

anti-oxidant enzyme; cytochrome P4502E1 (CYP2E1); inducible nitric oxide synthase (iNOS); non-alcoholic fatty liver disease (NAFLD); oxidative stress

Funding

  1. Southern California Institute of Research and Education, Long Beach, California
  2. University of Southern California Research Center for Alcoholic, Liver and Pancreatic Diseases Morphology
  3. NIH/NIAAA [p50-011999-08]
  4. Vicki and Joshi Krishna Foundation

Ask authors/readers for more resources

Background and Aim: Reactive oxygen species produced by cytochrome P4502E1 (CYP2E1) are believed to play a role in pathophysiology of non-alcoholic fatty liver disease (NAFLD). However, little is known about the expression, protein content and activity of anti-oxidant enzymes and the role of inducible nitric oxide synthase (iNOS), a source of reactive nitrogen species, in NAFLD. In the present study, we evaluate gene expression, protein content and activity of anti-oxidant enzymes, and iNOS, in a CYP2E1 overexpressing model of non-alcoholic fatty liver (NAFL). Methods: Non-transgenic (nTg) and CYP2E1 transgenic (Tg) mice were fed rodent chow for 8 months. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver triglycerides, malondialdehyde and protein carbonyls were measured. Gene expression of NF-E2-related factor (Nrf2), superoxide dismutase-1, -2 (SOD-1,2), catalase (CAT), glutathione peroxidase (GPx), heme oxygenase-1 (HO-1) and iNOS were determined. Protein content, activity and nitrosylation of the enzymes were also measured. Results: Tg mice had greater CYP2E1 activity and histological liver injury. MDA and protein carbonyls were increased, indicating insufficient anti-oxidant response. Gene expression of Nrf2, CAT, GPx, HO-1 and iNOS were significantly increased. Protein content and enzyme activities of most anti-oxidant enzymes were not correspondingly increased. iNOS activity and nitrosylation of CAT and SOD was greater in Tg mice liver. Conclusion: Hepatocyte-specific CYP2E1 overexpression results in increased oxidative stress and nitrosative stress. Several anti-oxidant enzymes are upregulated. Failure of corresponding increase in total protein and activity of anti-oxidant enzymes suggests modification/degradation, possibly by nitrosylation, due to increased iNOS activity in a CYP2E1 overexpressing NAFL mouse model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available