4.6 Article

Bcl-2 overexpression in hepatic stellate cell line CFSC-2G, induces a pro-fibrotic state

Journal

JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY
Volume 25, Issue 7, Pages 1306-1314

Publisher

WILEY
DOI: 10.1111/j.1440-1746.2009.06175.x

Keywords

acetaldehyde; Bcl-2; extracellular matrix; H2O2; liver fibrosis; oxidative stress

Funding

  1. CONACYT [45921-M, CB-2006-1-59659]
  2. Secretaria de Educacion Publica [PIFI2006-35-129-346/CA 142006-35-40]

Ask authors/readers for more resources

Background and Aim: Development of hepatic fibrosis is a complex process that involves oxidative stress (OS) and an altered balance between pro- and anti-apoptotic molecules. Since Bcl-2 overexpression preserves viability against OS, our objective was to address the effect of Bcl-2 overexpression in the hepatic stellate cells (HSC) cell-line CFSC-2G under acetaldehyde and H2O2 challenge, and explore if it protects these cells against OS, induces replicative senescence and/or modify extracellular matrix (ECM) remodeling potential. Methods: To induce Bcl-2 overexpression, HSC cell line CFSC-2G was transfected by lipofection technique. Green fluorescent protein-only CFSC-2G cells were used as a control. Cell survival after H2O2 treatment and total protein oxidation were assessed. To determine cell cycle arrest, proliferation-rate, DNA synthesis and senescence were assessed. Matrix metalloproteinases (MMP), tissue-inhibitor of MMP (TIMP), transglutaminases (TG) and smooth muscle a-actin (alpha-SMA) were evaluated by western blot in response to acetaldehyde treatment as markers of ECM remodeling capacity in addition to transforming growth factor-beta (TGF-beta) mRNA. Results: Cells overexpressing Bcl-2 survived approximate to 20% more than control cells when exposed to H2O2 and approximate to 35% proteins were protected from oxidation, but Bcl-2 did not slow proliferation or induced senescence. Bcl-2 overexpression did not change alpha-SMA levels, but it increased TIMP-1 (55%), tissue transglutaminases (tTG) (25%) and TGF-beta mRNA (49%), when exposed to acetaldehyde, while MMP-13 content decreased (47%). Conclusions: Bcl-2 overexpression protected HSC against oxidative stress but it did not induce replicative senescence. It increased TIMP-1, tTG and TGF-beta mRNA levels and decreased MMP-13 content, suggesting that Bcl-2 overexpression may play a key role in the progression of fibrosis in chronic liver diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available