4.3 Article

Dependence of runout distance on the number of rock blocks in large-scale rock-mass failure experiments

Journal

JOURNAL OF FOREST RESEARCH
Volume 19, Issue 3, Pages 329-339

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1007/s10310-013-0425-y

Keywords

Equivalent coefficient of friction; Inelastic collision; Number of rock blocks; Rock-mass runout distance

Categories

Ask authors/readers for more resources

To examine how the number of rock blocks affects the rock-mass runout distance, large-scale outdoor rockfall experiments were physically performed using cubiform granite rock blocks on a slope prepared with granite slabs under both dry and water-saturated conditions. To learn more about the runout mechanism, numerical simulations were also conducted using three-dimensional DEM to reproduce the physical experiments under dry conditions. Longitudinal rock-mass runout distance between the gravity centre in the initial rock block assembly before failure and the apparent gravity centre at final deposition was 10 % larger for experiments under water-saturated conditions than those under dry conditions, with identical numbers of rock blocks in the physical experiments. The physical and numerical experiments revealed that rock blocks at the front and top surfaces had a longer runout distance than those at the rear and bottom surfaces. A rock block scarcely surpassed the rock blocks in front longitudinally and the rock blocks next to it laterally. The equivalent coefficient of friction between gravity centres was positively correlated with the number of rock blocks, which contradicts the findings of a negative correlation between the volume of sturzstroms (rockfall avalanches) and the equivalent coefficient of friction in classic studies on the long runout mechanisms. Our results were likely attributable to the fact that more kinetic energy was dissipated due to repeated inelastic intercollisions with other surrounding rock blocks and granite slabs when the initial rock-mass volume (number of rock blocks) was larger.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available