4.8 Article

Facile synthesis of CeO2 hollow structures with controllable morphology by template-engaged etching of Cu2O and their visible light photocatalytic performance

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 179, Issue -, Pages 458-467

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2015.05.051

Keywords

CeO2 hollow structure; Template-engaged; Morphology-controlled; Photocatalysis

Funding

  1. National Science Foundation of China [21003157, 21273285]
  2. Beijing Nova Program [2008B76]
  3. Science Foundation of China University of Petroleum, Beijing [KYJJ2012-06-20]

Ask authors/readers for more resources

The novel ceria (CeO2) hollow structures with uniform cubic, polyhedral and sphere shapes were successfully synthesized by template-engaged coordinating etching of shape-controlled Cu2O crystals. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microcopy (TEM), high resolution of transmission electron microcopy (HRTEM), X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR) and photoluminescence spectroscopy (PL). The photocatalytic oxygen evolution via water oxidation was investigated for CeO2 hollow structures with varied shapes under visible light irradiation. The photocatalytic results indicate that polyhedral CeO2 nanocages show the highest photocatalytic activity, in contrast with spherical CeO2 hollow structure and cubic CeO2 hollow structure. The excellent catalytic activity can be attributed to the unique properties of the polyhedral CeO2 nanocages, including efficient light refection through the inner shells, more active sites for enhancing separation efficiency of charge carriers. It is expected that this study could provide helpful results for designing and exploration of novel hollow structures with tunable photocatalytic performance. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available