4.3 Article

Modeling physical optics phenomena by complex ray tracing

Journal

OPTICAL ENGINEERING
Volume 54, Issue 3, Pages -

Publisher

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.OE.54.3.035105

Keywords

physical optics modeling; complex ray tracing; Gaussian beam decomposition of arbitrary wave fields

Categories

Ask authors/readers for more resources

Physical optics modeling requires propagating optical wave fields from a specific radiometric source through complex systems of apertures and reflective or refractive optical components, or even complete instruments or devices, usually to a focal plane or sensor. The model must accurately include the interference and diffraction effects allowed by the polarization and coherence characteristics of both the initial optical wave field and the components and media through which it passes. Like a spherical wave and a plane wave, a Gaussian spherical wave (or Gaussian beam) is also a solution to the paraxial wave equation and does not change its fundamental form during propagation. The propagation of a Gaussian beam is well understood and easily characterized by a few simple parameters. Furthermore, a paraxial Gaussian beam can be propagated through optical systems using geometrical ray-trace methods. The decomposition of arbitrary propagating wave fields into a superposition of Gaussian beamlets is, thus, an alternative to the classical methods of propagating optical wave fields. This decomposition into Gaussian beamlets has been exploited to significant advantage in the modeling of a wide range of physical optics phenomena. (C) The Authors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available