4.6 Article

Cassava Starch-Based Films Plasticized with Sucrose and Inverted Sugar and Reinforced with Cellulose Nanocrystals

Journal

JOURNAL OF FOOD SCIENCE
Volume 77, Issue 6, Pages N14-N19

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1750-3841.2012.02710.x

Keywords

cellulose nanowhiskers; coatings; nanocomposite; starch; sucrose

Funding

  1. CAPES (Nanobiotec - EDT) [04/2008]
  2. Pro-reitoria de Pesquisa-UFMG
  3. FAPESB

Ask authors/readers for more resources

Bionanocomposites films of cassava starch plasticized with sucrose and inverted sugar and reinforced by cellulose nanocrystals (CNCs) were prepared by solution casting method incorporating 0.1 to 5 wt% of eucalyptus CNCs. The nanocrystals were characterized using transmission electron microscopy, whereas the bionanocomposites properties were studied using Fourier transform infrared spectroscopy, tensile measurements, water solubility, swelling behavior, and water activity (a(w)). The water resistance properties (solubility and swelling behavior) of the nanocomposites were enhanced with the addition of cellulose nanofillers. These results were explained in terms of the high crystallinity of the nanocrystals and the formation of a rigid network with the nanofillers, which provide physical barriers to the permeation of water within the hydrophilic cassava matrix. The addition of CNCs in the bionanocomposites decreases a(w) linearly, reaching values below 0.5 (for CNCs concentration higher than 4 wt%), a reference value for no microbial proliferation for food product design. The presence of small concentrations of CNCs (0.1-0.3 wt%) also effectively increased the maximum tensile strength (more than 90%) and elastic modulus (more than 400%), indicating the formation of a suitable percolation network in this concentration range. Because the cellulose nanofillers enhanced the mechanical and water stability properties of the nanocomposites, the obtained results in this work may be applied to the development of biodegradable packaging or coatings to enhance shelf life of food products.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available