4.6 Article

Role of β-Conglycinin and Glycinin Subunits in the pH-Shifting-Induced Structural and Physicochemical Changes of Soy Protein Isolate

Journal

JOURNAL OF FOOD SCIENCE
Volume 76, Issue 2, Pages C293-C302

Publisher

WILEY
DOI: 10.1111/j.1750-3841.2010.02035.x

Keywords

beta-conglycinin; emulsifying property; glycinin; pH-shifting; soy protein

Funding

  1. Ministry of Science and Technology, China [2010CB535014]

Ask authors/readers for more resources

Soy beta-conglycinin (7S) and glycinin (11S) were incubated up to 4 h in acidic (pH 1.5 to 3.5) or alkaline (pH 10 to 12) solutions to induce protein structural unfolding followed by refolding 1 h at pH 7.0, a process known as pH-shifting. The pH-shifting markedly increased (P < 0.05) emulsifying activity of 11S and to a lesser extent 7S; the former also produced more uniform oil droplets. The emulsifying activity improvements were accompanied by a significant rise in protein surface hydrophobicity, slight loss of the secondary structure (circular dichroism), and substantial dissociation of disulfide-linked basic and acidic 11S subunits. The findings suggested that 11S globulins of soy protein isolate (SPI) were more responsive to pH-shifting treatments than were 7S globulins, and the resulting emulsifying activity enhancements of 11S, in parallel with that of SPI, were indicative of its determinant role in the overall emulsifying properties of pH-shifting-treated SPI. Practical Application Extreme alkaline (pH 12) and acidic (pH 1.5) medium treatments can significantly modify the structure and enhance the emulsifying properties of both beta-conglycinin and glycinin components of SPI. The functionality improvement by the pH processes is more remarkable for the glycinin protein fraction. Therefore, SPI enriched with glycinin seems to be particularly suitable for extreme acidic or alkaline processes to produce surface-active functional ingredients for food applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available