4.6 Article

Physical Performance of Biodegradable Films Intended for Antimicrobial Food Packaging

Journal

JOURNAL OF FOOD SCIENCE
Volume 75, Issue 8, Pages E502-E507

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1750-3841.2010.01785.x

Keywords

antimicrobial; biodegradable films; enterocins; packaging; physical properties

Funding

  1. National Institute for Food and Agricultural Research (INIA) [RTA 04-010]

Ask authors/readers for more resources

Antimicrobial films were prepared by including enterocins to alginate, polyvinyl alcohol (PVOH), and zein films. The physical performance of the films was assessed by measuring color, microstructure (SEM), water vapor permeability (WVP), and tensile properties. All studied biopolymers showed poor WVP and limited tensile properties. PVOH showed the best performance exhibiting the lowest WVP values, higher tensile properties, and flexibility among studied biopolymers. SEM of antimicrobial films showed increased presence of voids and pores as a consequence of enterocin addition. However, changes in microstructure did not disturb WVP of films. Moreover, enterocin-containing films showed slight improvement compared to control films. Addition of enterocins to PVOH films had a plasticizing effect, by reducing its tensile strength and increasing the strain at break. The presence of enterocins had an important effect on tensile properties of zein films by significantly reducing its brittleness. Addition of enterocins, thus, proved not to disturb the physical performance of studied biopolymers. Development of new antimicrobial biodegradable packaging materials may contribute to improving food safety while reducing environmental impact derived from packaging waste. Practical Application: Development of new antimicrobial biodegradable packaging materials may contribute to improving food safety while reducing environmental impact derived from packaging waste.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available