4.4 Article

OPTIMIZATION OF NEW FLOUR IMPROVER MIXING FORMULA BY SURFACE RESPONSE METHODOLOGY

Journal

JOURNAL OF FOOD PROCESS ENGINEERING
Volume 33, Issue 2, Pages 234-256

Publisher

WILEY
DOI: 10.1111/j.1745-4530.2008.00270.x

Keywords

-

Ask authors/readers for more resources

In the present study, we search to improve the viscoelastic properties of wheat flour characterized by a low bread-making quality. Six regulators were tested: broad bean flour, gluten, monodiglyceride (MDG), ascorbic acid, sodium alginate and a mixture of amylase and xylanase. A hybrid design was carried out in order to study the effect of these regulators on the alveographic properties of wheat flour dough. Two alveographic responses (W: deformation energy and P/L: elasticity-to-extensibility ratio) were studied and simultaneously optimized via the desirability functions. An optimal mixture, containing 13.17 g/kg of broad bean flour, 15.13 g/kg of gluten, 0.155 g/kg of ascorbic acid, 3.875 g/kg of MDG, 2.75 g/kg of sodium alginate and 0.3 g/kg of enzyme mixture, was obtained and tested in a Tunisian flour. It led to a dough characterized by a W = 274 x 10-4 J and P/L = 0.74 versus 191 x 10-4 J and 0.40, respectively, for the Tunisian flour without improvers. PRACTICAL APPLICATIONS In this work, we developed a new flour improver mixing formula intended to be used with wheat flour characterized by a low bread-making quality. This improver mixture is in powder form and contains 13.17 g of broad bean flour, 15.13 g of gluten, 0.155 g of ascorbic acid, 3.875 g of monodiglyceride, 2.75 g of sodium alginate and 0.3 g of enzyme mixture per kilogram of wheat flour. The incorporation of this improver mixture in low bread-making quality wheatflour leads to an increase of its deformation energy (W) of about 43% and produces large volume bread.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available