4.5 Review

Role of food-derived opioid peptides in the central nervous and gastrointestinal systems

Journal

JOURNAL OF FOOD BIOCHEMISTRY
Volume 43, Issue 1, Pages -

Publisher

WILEY
DOI: 10.1111/jfbc.12629

Keywords

casomorphins; central nervous system; exorphins; food peptides; gastrointestinal tract; opioid peptides; rubiscolins; soymorphins

Ask authors/readers for more resources

Opioid receptors are widely distributed in central nervous system and peripheral tissues. Endogenous opioid receptor ligands are involved in many physiological processes. Exogenous peptides, derived from food proteins with gastrointestinal proteases, also exert opioid-like activities, and they include gluten exorphins (wheat), casomorphins (milk), rubiscolins (spinach), and soymorphins (soybean). Milk-derived opioid peptides play both agonistic and antagonistic roles, and most of the opioid peptides exert regulatory functions in the central nervous system, related to nociception, emotion and memory after oral, intracerebroventricular, or intraperitoneal administration. This indicates that the peptides may have crossed the blood-brain barrier or acted peripherally. Furthermore, some food-derived opioid peptides influence gastrointestinal functions such as gut motility, hormone release, appetite, mucus production, and local immunity. In healthy states, food-derived opioid peptides could benefit both the nervous and digestive systems, whereas in pathological conditions, the gastrointestinal permeability change and opioid excess may contribute to pathogenesis of some disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available