4.6 Article

Pupillary Responses to High-Irradiance Blue Light Correlate with Glaucoma Severity

Journal

OPHTHALMOLOGY
Volume 122, Issue 9, Pages 1777-1785

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ophtha.2015.06.002

Keywords

-

Categories

Funding

  1. Duke-National University of Singapore Signature Research Program - Agency for Science, Technology and Research, Singapore
  2. Ministry of Health, Singapore, Republic of Singapore
  3. National Medical Research Council, Singapore, Republic of Singapore [NMRC/NIG/1000/2009, NMRC/CIRG/1401/2014]
  4. Singapore National Eye Centre Health Research Endowment Fund, Singapore, Republic of Singapore [1005/20/2013]
  5. Biomedical Research Council, Singapore, Republic of Singapore [01-TCRP-2010, TCR0101674]

Ask authors/readers for more resources

Purpose: To evaluate whether a chromatic pupillometry test can be used to detect impaired function of intrinsically photosensitive retinal ganglion cells (ipRGCs) in patients with primary open-angle glaucoma (POAG) and to determine if pupillary responses correlate with optic nerve damage and visual loss. Design: Cross-sectional study. Participants: One hundred sixty-one healthy controls recruited from a community polyclinic (55 men; 151 ethnic Chinese) and 40 POAG patients recruited from a glaucoma clinic (22 men; 35 ethnic Chinese) 50 years of age or older. Methods: Subjects underwent monocular exposure to narrowband blue light (469 nm) or red light (631 nm) using a modified Ganzfeld dome. Each light stimulus was increased gradually over 2 minutes to activate sequentially the rods, cones, and ipRGCs that mediate the pupillary light reflex. Pupil diameter was recorded using an infrared pupillography system. Main Outcome Measures: Pupillary responses to blue light and red light were compared between control subjects and those with POAG by constructing dose-response curves across a wide range of corneal irradiances (7-14 log photons/cm(2) per second). In patients with POAG, pupillary responses were evaluated relative to standard automated perimetry testing (Humphrey Visual Field [HVF]; Carl Zeiss Meditec, Dublin, CA) and scanning laser ophthalmoscopy parameters (Heidelberg Retinal Tomography [HRT]; Heidelberg Engineering, Heidelberg, Germany). Results: The pupillary light reflex was reduced in patients with POAG only at higher irradiance levels, corresponding to the range of activation of ipRGCs. Pupillary responses to high-irradiance blue light associated more strongly with disease severity compared with responses to red light, with a significant linear correlation observed between pupil diameter and HVF mean deviation (r = -0.44; P = 0.005) as well as HRT linear cup-to-disc ratio (r = 0.61; P < 0.001) and several other optic nerve head parameters. Conclusions: In glaucomatous eyes, reduced pupillary responses to high-irradiance blue light were associated with greater visual field loss and optic disc cupping. In POAG, a short chromatic pupillometry test that evaluates the function of ipRGCs can be used to estimate the degree of damage to retinal ganglion cells that mediate image-forming vision. This approach could prove useful in detecting glaucoma. (C) 2015 by the American Academy of Ophthalmology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available