4.4 Article

Cetyltrimethylammonium Bromide Capped 9-Anthraldehyde Nanoparticles for Selective Recognition of Phosphate Anion in Aqueous Solution Based on Fluorescence Quenching and Application for Analysis of Chloroquine

Journal

JOURNAL OF FLUORESCENCE
Volume 25, Issue 1, Pages 31-38

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10895-014-1451-7

Keywords

9-Anthaldehyde nanoparticles; Cetyltrimethylammonium bromide; Fluorescence quenching; Phosphate anion sensing; Langmuir adsorption; Chloroquine

Funding

  1. Department of Science and Technology (DST), New Delhi under FIST-Level-II program
  2. University Grants Commission (UGC), New Delhi through DRS - Phase- II program

Ask authors/readers for more resources

Cetyltrimethylammonium bromide (CTAB) capped 9-Anthraldehyde nanoparticles (9-AANPs) in aqueous suspension prepared by reprecipitation method are seen brick shaped in Scanning Electron Microscope image. The Dynamic Light Scattering histogram of nanoparticle suspension reveals narrow particle size distribution and average particle size is 89 nm. The positive zeta potential 20.8 mV measured on zeta sizer indicates high level stability of nanoparticle suspension. The blue shift of 65359.47 cm(-1) observed in the UV-Visible absorption spectrum of CTAB capped 9-AANPs from the absorption maximum of dilute solution of 9-Anthraldehyde (9-AA) in acetone is an indication of formation of H-bonded aggregates by pi stacking effect. The strong Aggregation Induced Enhanced Emission (AIEE) of CTAB capped 9-AANPs at 537 nm is selectively quenched with addition of phosphate anion solution. The fluorescence quenching results of the nanoparticle in aqueous solution fit into conventional Stern-Volmer relation in the range of phosphate ion concentration of 0-40 mu M. The possible mechanism of fluorescence quenching of nanoparticle is explained by considering adsorption of phosphate anion electrostatistically on positively charged surface of nanoparticle generated by CTAB cap. The Langmuir adsorption plot constructed for PO4 (3-) adsorption on the basis of fluorescence quenching results of CTAB capped 9-AANPs is linear. The estimated value of Langmuir constant (K) and Stern - Volmer constant (K-sv) are in close agreement within experimental limits. The sensing method of phosphate ion based on fluorescence quenching of 9-AANPs is applied successfully for quantification of phosphate from pharmaceutical tablet chloroquine phosphate and hence to determine the amount of chloroquine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available