4.4 Article

Imaging of Flow Patterns with Fluorescent Molecular Rotors

Journal

JOURNAL OF FLUORESCENCE
Volume 20, Issue 5, Pages 1087-1098

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10895-010-0661-x

Keywords

Molecular rotors; Flow sensors; Shear stress; Twisted intramolecular charge transfer states (TICT); Microfluidics; Computed fluid dynamics

Funding

  1. NSF [CMMI-0652476]
  2. NIH [1R21 RR 025358]

Ask authors/readers for more resources

Molecular rotors are a group of fluorescent molecules that form twisted intramolecular charge transfer states (TICT) upon photoexcitation. Some classes of molecular rotors, among them those that are built on the benzylidene malononitrile motif, return to the ground state either by nonradiative intramolecular rotation or by fluorescence emission. In low-viscosity solvents, intramolecular rotation dominates, and the fluorescence quantum yield is low. Higher solvent viscosities reduce the intramolecular rotation rate, thus increasing the quantum yield. We recently described a different mechanism whereby the fluorescence quantum yield of the molecular rotor also depends on the shear stress of the solvent. In this study, we examined a possible application for shear-sensitive molecular rotors for imaging flow patterns in fluidic chambers. Flow chambers with different geometries were constructed from polycarbonate or acrylic. Solutions of molecular rotors in ethylene glycol were injected into the chamber under controlled flow rates. LED-induced fluorescence (LIF) images of the flow chambers were taken with a digital camera, and the intensity difference between flow and no-flow images was visualized and compared to computed fluid dynamics (CFD) simulations. Intensity differences were detectable with average flow rates as low as 0.1 mm/s, and an exponential association between flow rate and intensity increase was found. Furthermore, a good qualitative match to computed fluid dynamics simulations was seen. On the other hand, prolonged exposure to light reduced the emission intensity. With its high sensitivity and high spatial and temporal resolution, imaging of flow patterns with molecular rotors may become a useful tool in microfluidics, flow measurement, and control.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available