4.4 Review

Fluorescence Techniques for Determination of the Membrane Potentials in High Throughput Screening

Journal

JOURNAL OF FLUORESCENCE
Volume 20, Issue 6, Pages 1139-1157

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10895-010-0665-6

Keywords

Fluorescence; Membrane electrostatic potential; HTS; Lipid bilayer

Funding

  1. Polish Ministry of Science and Higher Education [N N518 1903 33]
  2. Centre of Biomedical Engineering, Wroclaw University of Technology

Ask authors/readers for more resources

The characterization of small molecules requires identification and evaluation of several predictive parameters, when selecting compounds for pharmacological applications and/or determining their toxicity. A number of them are correlated with the compound interaction with biological membranes and/or capacity to cross them. The knowledge of the extent of adsorption, partition coefficient and permeability along with the compound ability to alter membrane properties are critical for such studies. Lipid bilayers are frequently used as the adequate experimental models of a biological membrane despite their simple structure and a limited number of components. A significant number of the biologically relevant lipid bilayer properties are related to its electrostatics. Three electrostatic potentials were defined for the lipid bilayer; the intrinsic or induced surface electrostatic potential, the dipole potential and the membrane potential. Each of them was measured with dedicated methodologies. The complex measurement protocols and technically demanding instrumentation made the development of efficient HTS approaches for complete characterization of membrane electrostatics practically impossible. However, the rapid development of fluorescence techniques accompanied by rapid growth in diversity and number of dedicated fluorescent probes enabled characterization of lipid bilayer electrostatics in a moderately simple manner. Technically advanced, compact and automated workstations, capable of measuring practically all fluorescence parameters, are now available. Therefore, the proper selection of fluorescent probes with measuring procedures can be designed to evaluate drug candidates in context of their ability to alter membrane electrostatics. In the paper we present a critical review of available fluorescence methods, useful for the membrane electrostatics evaluation and discuss the feasibility of their adaptation to HTS procedures. The significance of the presented methodology is even greater considering the rapid growth of advanced drug formulations, where electrostatics is an important parameter for production processes and pharmacokinetics of the product. Finally, the potential of the membrane electrostatics to emerge as a viable pharmacological target is indicated and fluorescence techniques capable to evaluate this potential are presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available