4.5 Article

Flutter of an elastic plate in a channel flow: Confinement and finite-size effects

Journal

JOURNAL OF FLUIDS AND STRUCTURES
Volume 27, Issue 1, Pages 76-88

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jfluidstructs.2010.09.002

Keywords

Flow-induced vibration; Cantilevered plate; Flutter instability; Channel flow

Ask authors/readers for more resources

When a cantilevered plate lies in an axial flow, it is known to exhibit self-sustained oscillations once a critical flow velocity is reached. This flutter instability has been investigated theoretically, numerically and experimentally by different authors, showing that the critical velocity is always underestimated by two-dimensional models. However, it is generally admitted that, if the plate is confined in the spanwise direction by walls, three-dimensionality of the flow is reduced and the two-dimensional models can apply. The aim of this article is to quantify this phenomenon by analysing the effect of the clearance between the plate and the side walls on the flutter instability. To do so, the pressure distribution around an infinite-length plate is first solved in the Fourier space, which allows to develop an analytical model for the pressure jump. This model is then used in real space to compute instability thresholds as a function of the channel clearance, the plate aspect ratio and mass ratio. Our main result shows that, as the value of the clearance is reduced, the convergence towards the two-dimensional limit is so slow that this limit is unattainable experimentally. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available