4.7 Article

Global stability analysis of the axisymmetric wake past a spinning bullet-shaped body

Journal

JOURNAL OF FLUID MECHANICS
Volume 748, Issue -, Pages 302-327

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2014.187

Keywords

instability; separated flows; wakes

Funding

  1. Spanish MINECO [DPI2011-06624- C02, DPI2011-06624-C03]
  2. Junta de Andalucia [P10-TEP5702]
  3. University of Jaen [UJA-2010-12-60]

Ask authors/readers for more resources

We analyze the global linear stability of the axisymmetric flow around a spinning bullet-shaped body of length-to-diameter ratio L / D = 2, as a function of the Reynolds number, Re = rho w(infinity)D/mu, and of the rotation parameter Omega = omega D/(2w(infinity)), in the ranges Re < 450 and 0 <= Omega <= 1. Here, w infinity and omega are the free-stream and the body rotation velocities respectively, and rho and mu are the fluid density and viscosity. The two-dimensional eigenvalue problem (EVP) is solved numerically to find the spectrum of complex eigenvalues and their associated eigenfunctions, allowing us to explain the different bifurcations from the axisymmetric state observed in previous numerical studies. Our results reveal that, for the parameter ranges investigated herein, three global eigenmodes, denoted low-frequency (LF), medium-frequency (MF) and high-frequency (HF) modes, become unstable in different regions of the. (Re; Omega)-parameter plane. We provide precise computations of the corresponding neutral curves, that divide the. (Re; Omega)-plane into four different regions: the stable axisymmetric flow prevails for small enough values of Re and Omega, while three different frozen states, where the wake structures co-rotate with the body at different angular velocities, take place as a consequence of the destabilization of the LF, MF and HF modes. Several direct numerical simulations (DNS) of the nonlinear state associated with the MF mode, identified here for the first time, are also reported to complement the linear stability results. Finally, we point out the important fact that, since the axisymmetric base flow is SO(2)-symmetric, the theory of equivariant bifurcations implies that the weakly nonlinear regimes that emerge close to criticality must necessarily take the form of rotating-wave states. These states, previously referred to as frozen wakes in the literature, are thus shown to result from the base-flow symmetry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available