4.7 Article

The vorticity versus the scalar criterion for the detection of the turbulent/non-turbulent interface

Journal

JOURNAL OF FLUID MECHANICS
Volume 750, Issue -, Pages 578-596

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2014.280

Keywords

mixing; shear layer turbulence; turbulent flows

Funding

  1. NRW-Research School
  2. Cluster of Excellence
  3. Excellence Initiative of the German federal state governments to promote science and research at German universities

Ask authors/readers for more resources

Based on a direct numerical simulation (DNS) of a temporally evolving mixing layer, we present a detailed study of the turbulent/non-turbulent (T/NT) interface that is defined using the two most common procedures in the literature, namely either a vorticity or a scalar criterion. The different detection approaches are examined qualitatively and quantitatively in terms of the interface position, conditional statistics and orientation of streamlines and vortex lines at the interface. Computing the probability density function (p.d.f.) of the mean location of the T/NT interface from vorticity and scalar allows a detailed comparison of the two methods, where we observe a very good agreement. Furthermore, conditional mean profiles of various quantities are evaluated. In particular, the position p.d.f.s for both criteria coincide and are found to follow a Gaussian distribution. The terms of the governing equations for vorticity and passive scalar are conditioned on the distance to the interface and analysed. At the interface, vortex stretching is negligible and the displacement of the vorticity interface is found to be determined by diffusion, analogous to the scalar interface. In addition, the orientation of vortex lines at the vorticity and the scalar based T/NT interface are analyzed. For both interfaces, vorticity lines are perpendicular to the normal vector of the interface, i.e. parallel to the interface isosurface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available