4.7 Article

Organised large structure in the post-transition mixing layer. Part 2. Large-eddy simulation

Journal

JOURNAL OF FLUID MECHANICS
Volume 762, Issue -, Pages 302-343

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2014.660

Keywords

free shear layers; shear layer turbulence; turbulence simulation

Ask authors/readers for more resources

Three-dimensional large-eddy simulations of two-stream mixing layers developing spatially from laminar boundary layers are presented, replicating wind-tunnel experiments carried out in Part 1 of this study. These simulations have been continued through the mixing transition and into the fully turbulent self-similar flow beyond. In agreement with the experiments, the simulations show that the familiar mechanism of growth by vortex amalgamation is replaced at the mixing transition by a previously unrecognised mechanism in which the spanwise-coherent large structures individually undergo continuous linear growth. In the post-transition flow it is this continuous linear growth of the individual structures that produces the self-similar growth of the mixing-layer thickness, the large-structure interactions occurring as a consequence of the growth, not its cause. New information is also presented on the topography of the organised post-transition flow and on its cyclical evolution through the lifetimes of the individual large structures. The dynamic and kinematic implications of these findings are discussed and shown to define quantitatively the growth rate of the homogeneous post-transition mixing layer in its organised state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available