4.7 Article

Turbulent flow over superhydrophobic surfaces with streamwise grooves

Journal

JOURNAL OF FLUID MECHANICS
Volume 747, Issue -, Pages 186-217

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2014.137

Keywords

drag reduction; flow control; turbulent flows

Funding

  1. German Research Foundation (DFG) [FR2823/2-1]
  2. Center of Smart Interfaces at TU Darmstadt
  3. Excellence Initiative of the German Federal and State Governments
  4. Graduate School of Computational Engineering at TU Darmstadt
  5. Japan Society for the Promotion of Science (JSPS)
  6. Ministry of Education, Culture, Sports, Science and Technology (MEXT) [25289037]
  7. Grants-in-Aid for Scientific Research [25289037] Funding Source: KAKEN

Ask authors/readers for more resources

We investigate the effects of superhydrophobic surfaces (SHS) carrying streamwise grooves on the flow dynamics and the resultant drag reduction in a fully developed turbulent channel flow. The SHS is modelled as a flat boundary with alternating no-slip and free-slip conditions, and a series of direct numerical simulations is performed with systematically changing the spanwise periodicity of the streamwise grooves. In all computations, a constant pressure gradient condition is employed, so that the drag reduction effect is manifested by an increase of the bulk mean velocity. To capture the flow properties that are induced by the non-homogeneous boundary conditions the instantaneous turbulent flow is decomposed into the spatial-mean, coherent and random components. It is observed that the alternating no-slip and free-slip boundary conditions lead to the generation of Prandtl's second kind of secondary flow characterized by coherent streamwise vortices. A mathematical relationship between the bulk mean velocity and different dynamical contributions, i. e. the effective slip length and additional turbulent losses over slip surfaces, reveals that the increase of the bulk mean velocity is mainly governed by the effective slip length. For a small spanwise periodicity of the streamwise grooves, the effective slip length in a turbulent flow agrees well with the analytical solution for laminar flows. Once the spanwise width of the free-slip area becomes larger than approximately 20 wall units, however, the effective slip length is significantly reduced from the laminar value due to the mixing caused by the underlying turbulence and secondary flow. Based on these results, we develop a simple model that allows estimating the gain due to a SHS in turbulent flows at practically high Reynolds numbers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available