4.7 Article

Dynamics of a viscous layer flowing radially over an inviscid ocean

Journal

JOURNAL OF FLUID MECHANICS
Volume 696, Issue -, Pages 152-174

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2012.21

Keywords

gravity currents; ice sheets; thin films

Funding

  1. EPSRC

Ask authors/readers for more resources

We present a theoretical and experimental study of a viscous fluid layer spreading over a deep layer of denser, inviscid fluid. Specifically, we study an axisymmetric flow produced by a vertical line source. Close to the source, the flow is controlled viscously, with a balance between radial compressive stresses and hoop stresses. Further out, the flow is driven by gradients in the buoyancy force and is resisted by viscous extensional and hoop stresses. An understanding of these different fluid-mechanical relationships is developed by asymptotic analyses for early times and for the near and far fields at late times. Confirmation of the late-time, far-field behaviour is obtained from a series of laboratory experiments in which golden syrup was injected into denser solutions of potassium carbonate. We use our mathematical solutions to discuss a physical mechanism by which horizontal viscous stresses in a spreading ice shelf, such as those in West Antarctica, can buttress the grounded ice sheet that supplies it.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available