4.7 Article

Continual skipping on water

Journal

JOURNAL OF FLUID MECHANICS
Volume 669, Issue -, Pages 328-353

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112010005057

Keywords

hydraulics; instability

Funding

  1. National Science Foundation
  2. Office of Naval Research
  3. Killam Foundation
  4. Engineering and Physical Sciences Research Council
  5. Engineering and Physical Sciences Research Council [GR/T02416/01, GR/T02423/01] Funding Source: researchfish

Ask authors/readers for more resources

Experiments are conducted to study the planing and skipping of a rectangular paddle on the surface of a shallow stream. The paddle is allowed to move freely up and down by attaching it to a pivoted arm. A steady planing state, in which the lift force from the water balances the weight on the paddle, is found to be stable for small stream velocities but to become unstable above a certain threshold velocity which depends upon the weight and the angle of attack. Above this threshold, the paddle oscillates in the water and can take off into a continual bouncing, or skipping, motion, with a well-defined amplitude and frequency. The transition is sometimes bistable so that both a steady planing state and a regular skipping state are possible for the same experimental parameters. Shallow-water theory is used to construct simple models that explain the qualitative features of the planing and skipping states in the experiments. It is found that a simple parameterisation of the lift force on the paddle proportional to the depth of entry is not sufficient to explain the observations, and it is concluded that the rise of water ahead of the paddle, in particular the way this varies over time, is responsible for causing the planing state to become unstable and for enabling a continual skipping state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available