4.7 Article

Forced turbulent fountain flow behaviour

Journal

JOURNAL OF FLUID MECHANICS
Volume 671, Issue -, Pages 535-558

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112010005872

Keywords

jets; plumes/thermals

Funding

  1. Australian Research Council

Ask authors/readers for more resources

Numerical simulations of turbulent fountain flow are used to investigate the important energy and mass transfer mechanisms present in the forced fountain flow regime, which has been reported to exist at Froude numbers (Fr) greater than 3. The flow is equivalent to a negatively buoyant jet with three flow streams, the inner upflow (IF), the outer downflow (OF) and the surrounding ambient fluid (AF). Simulation results are presented for Fr = 4 and 7 at Reynolds number Re = 3350. The mean fountain penetration height scales with the previously reported relation Z(m)/R(0) = 2.46Fr, where R(0) is the source radius, but the assumptions behind analytical derivations of the relation are not supported by the present results. The results suggest that the OF may be relatively well described by the dynamics of a pure line plume surrounding the IF but with higher entrainment owing to the unsteady pulsing behaviour of the flow entering the OF from the IF. The length scale for a pure plume appears to apply at Fr = 7 in the OF and a degree of self-similarity exists. Comparisons with previous results suggest the IF is not fully developed at Fr = 7 and entrainment into the IF from the OF may not occur until Fr > 15.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available