4.7 Article

Collapse of void arrays under stress wave loading

Journal

JOURNAL OF FLUID MECHANICS
Volume 649, Issue -, Pages 399-427

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112009993545

Keywords

-

Funding

  1. US Department of Energy [B523819]

Ask authors/readers for more resources

The interaction of an array of voids collapsing after passage of a stress wave is studied as a model problem relevant to porous materials, for example, to energy localization leading to hotspot formation in energetic materials. Dynamic experiments are designed to illuminate the hydrodynamic processes of collapsing void interactions for eventual input into device-scale initiation models. We examine a stress wave loading representative of accidental mechanical insult, for which the wave passage length scale is comparable with the void and inter-void length scales. A single void, two-void linear array, and a four-void staggered array are studied. Diagnostic techniques include high-speed imaging of cylindrical void collapse and the first particle image velocimetry measurements in the surrounding material. Voids exhibit an asymmetrical collapse process, with the formation of a high-speed internal jet. Volume and diameter versus time data for single void collapse under stress wave loading are compared with literature results for single voids under shock-wave loading. The internal volume history does not fall on a straight line and is in agreement with simulations, but in contrast to existing linear experimental data fits. The velocity field induced in the surrounding material is measured to quantify a region of influence at selected stages of single void collapse. In the case of multiple voids, the stress wave diffracts in response to the presence of the upstream void, affecting the loading condition on the downstream voids. Both collapse-inhibiting (shielding) and collapse-triggering effects are observed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available