4.7 Article

The laminar generalized Stokes layer and turbulent drag reduction

Journal

JOURNAL OF FLUID MECHANICS
Volume 667, Issue -, Pages 135-157

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112010004398

Keywords

drag reduction; turbulence control

Ask authors/readers for more resources

This paper considers plane channel flow modified by waves of spanwise velocity applied at the wall and travelling along the streamwise direction. Both laminar and turbulent regimes for the streamwise flow are studied. When the streamwise flow is laminar, it is unaffected by the spanwise flow induced by the waves. This flow is a thin, unsteady and streamwise-modulated boundary layer that can be expressed in terms of the Airy function of the first kind. We name it the generalized Stokes layer because it reduces to the classical oscillating Stokes layer in the limit of infinite wave speed. When the streamwise flow is turbulent, the laminar generalized Stokes layer solution describes well the space-averaged turbulent spanwise flow, provided that the phase speed of the waves is sufficiently different from the turbulent convection velocity, and that the time scale of the forcing is smaller than the life time of the near-wall turbulent structures. Under these conditions, the drag reduction is found to scale with the Stokes layer thickness, which renders the laminar solution instrumental for the analysis of the turbulent flow. A classification of the turbulent flow regimes induced by the waves is presented by comparing parameters related to the forcing conditions with the space and time scales of the turbulent flow.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available