4.7 Article

Large-eddy simulation of a buoyant plume in uniform and stably stratified environments

Journal

JOURNAL OF FLUID MECHANICS
Volume 652, Issue -, Pages 75-103

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112010000017

Keywords

-

Ask authors/readers for more resources

We consider large-eddy simulation (LES) of buoyant plumes in uniform and stably stratified environments. We show that in the former case the results agree well with the simple plume model of Morton, Taylor & Turner (Proc. R. Soc. Lond. A, vol. 234, 1956, p. 1). In particular, we calculate an entrainment constant which is consistent with laboratory and field measurements and find no significant difference between the radial spreading rates of vertical velocity and buoyancy. In a stably stratified environment, the LES plume shows better agreement with Morton et al. (1956) below the level at which the buoyancy first vanishes than above this level. Above the level of neutral buoyancy, the LES plume is characterized by an ascending core of negative buoyancy surrounded by a descending annulus of positive buoyancy. We compare the LES data with the model of Bloomfield & Kerr (J. Fluid Mech., vol. 424, 2000, p. 197), which explicitly accounts for these coherent motions. The model exhibits many qualitative aspects of the LES plume and quantitative agreement can be improved by adjusting the downward volume flux relative to the upward volume flux in a manner consistent with the LES plume. This simple adjustment, along with revised values of the entrainment constants, represents the combined effects of an overturning region at the top of the plume (where a fluid element reverses direction), 'plume-top' entrainment (whereby the plume entrains ambient fluid above the plume) as well as lateral entrainment and detrainment processes (both external and internal) occurring above the top of the model plume.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available