4.7 Article

Anomalous pressure drop behaviour of mixed kinematics flows of viscoelastic polymer solutions: a multiscale simulation approach

Journal

JOURNAL OF FLUID MECHANICS
Volume 631, Issue -, Pages 231-253

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112009006922

Keywords

-

Funding

  1. National Science Foundation [CBET-0755269]
  2. Div Of Chem, Bioeng, Env, & Transp Sys
  3. Directorate For Engineering [755269] Funding Source: National Science Foundation

Ask authors/readers for more resources

A long-standing unresolved problem in non-Newtonian-fluid mechanics, namely, the relationship between friction drag and flow rate in inertialess complex kinematics flows of dilute polymeric solutions is investigated via self-consistent multiscale flow simulations. Specifically, flow of a highly elastic dilute polymeric solution, described by first principles micromechanical models, through a 4:1:4 axisymmetric contraction and expansion geometry is examined utilizing Our recently developed highly efficient multiscale flow Simulation algorithm (Koppol, Sureshkumar & Khomami, J. Non-Newtonian Fluid Mech., vol. 141, 2007, p. 180). Comparison with experimental measurements (Rothstein & McKinley, J. Non-Newtonian Fluid Mech., vol. 86, 1999, p.61) shows that the pressure drop evolution as a function of flow rate can be accurately predicted when the chain dynamics is described by multi-segment bead-spring micromechanical models that closely capture the transient extensional viscosity of the experimental fluid. Specifically, for the first time the experimentally observed doubling of the dimensionless excess pressure drop at intermediate flow rates is predicted. Moreover, based on an energy dissipation analysis it has been shown that the variation of the excess pressure drop with the flow rate is controlled by the flow-microstructure coupling in the extensional flow dominated region of the flow. Finally, the influence of the macromolecular chain extensibility on the vortex dynamics, i.e. growth of the upstream corner vortex at low chain extensibility or the shrinkage of the upstream corner vortex coupled with the formation of a lip vortex that eventually merges with the upstream corner vortex at high chain extensibility is elucidated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available