4.7 Article

Reversal of the lift force on an oblate bubble in a weakly viscous linear shear flow

Journal

JOURNAL OF FLUID MECHANICS
Volume 628, Issue -, Pages 23-41

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112009006090

Keywords

-

Ask authors/readers for more resources

We compute the flow about an oblate spheroidal bubble of prescribed shape set fixed in a viscous linear shear flow in the range of moderate to high Reynolds numbers. In contrast to predictions based on inviscid theory, the numerical results reveal that for weak enough shear rates, the lift force and torque change sign in an intermediate range of Reynolds numbers when the bubble oblateness exceeds a critical value that depends on the relative shear rate. This effect is found to be due to the vorticity generated at the bubble surface which, combined with the velocity gradient associated with the upstream shear, results in a system of two counter-rotating streamwise vortices whose sign is opposite to that induced by the classical inviscid tilting of the upstream vorticity around the bubble. We show that this lift reversal mechanism is closely related to the wake instability mechanism experienced by a spheroidal bubble rising in a stagnant liquid.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available