4.7 Article

Comparison between experiments and direct numerical simulations in a channel flow with roughness on one wall

Journal

JOURNAL OF FLUID MECHANICS
Volume 600, Issue -, Pages 403-426

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112008000657

Keywords

-

Ask authors/readers for more resources

The turbulent flow in a two-dimensional channel with roughness on one wall is investigated using experiments and direct numerical simulations (DNS). The elements have a square cross-section with height k = 0.1H (H is the channel half-width) and a streamwise spacing of 4k. The Reynolds number Re,, based on the friction velocity at the rough wall and H, is in the range 300-1100. Particular attention is given to the rough-wall side. Measured turbulence intensities, length scales, leading terms in the turbulent kinetic energy budget, and velocity spectra are compared with those obtained from the DNS. Close agreement is found, yielding support for the simplifying assumptions in the experiment (notably local isotropy and Taylor's hypothesis) and the adequacy of the spatial resolution in the simulation. Overall, the profiles of the Reynolds normal stresses on the roughness side are almost independent of Re,,, when normalized by outer variables. Energy spectra at different locations above the rough wall collapse well at high wavenumbers, when normalized by Kolmogorov scales. In contrast to previous studies, a region of negative energy production near the location of the maximum streamwise velocity is not observed. Comparison with a smooth-wall channel, at similar values of the friction-velocity Reynolds number, highlights differences only in the streamwise velocity component near the wall.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available