4.7 Article

Simulation of flow around a row of square cylinders

Journal

JOURNAL OF FLUID MECHANICS
Volume 606, Issue -, Pages 369-397

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112008001924

Keywords

-

Ask authors/readers for more resources

In this paper, the low-Reynolds number (Re = 80) flow around a row of nine square cylinders placed normal to the oncoming flow is investigated using the lattice-Boltzmann method. The effects of the cylinder spacing on the flow are studied for spacing to diameter ratios of 0.3 to 12. No significant interaction between the wakes is observed with spacings greater than six times the diameter. At smaller spacings, the flow regimes as revealed by vorticity field and drag coefficient signal are: synchronized, quasi-periodic and chaotic. These regimes are shown to result from the interaction between primary (vortex shedding) and secondary (cylinder interaction) frequencies; the strength of the latter frequency in turn depends on the cylinder spacing. The secondary frequency is also related to transition between narrow and wide wakes behind a cylinder. The mean drag coefficient and Strouhal number are found to increase rapidly with a decrease in spacing; correlations of these parameters with spacing are proposed. The Strouhal number based on gap velocity becomes approximately constant for a large range of spacings, highlighting the significance of gap velocity for this class of flows. It is also possible to analyse the vortex pattern in the synchronized and quasi-periodic regimes with the help of vorticity dynamics. These results, most of which have been obtained for the first time, are of fundamental significance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available