4.7 Article

Steady inlet flow in stenotic geometries: convective and absolute instabilities

Journal

JOURNAL OF FLUID MECHANICS
Volume 616, Issue -, Pages 111-133

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112008004084

Keywords

-

Funding

  1. Australian Research Council [DP0555897, LX0668992]
  2. Australian Academy of Science
  3. Embassy of France in Australia
  4. Australian Research Council [LX0668992, DP0555897] Funding Source: Australian Research Council

Ask authors/readers for more resources

Steady inlet flow through a circular tube with an axisymmetric blockage of varying size is studied both numerically and experimentally. The geometry consists of a long, straight tube and a blockage, semicircular in cross-section, serving as a simplified model of an arterial stenosis. The stenosis is characterized by a single parameter, the aim being to highlight fundamental behaviours of constricted flows, in terms of the total blockage. The Reynolds number is varied between 50 and 2500 and the stenosis degree by area between 0.20 and 0.95. Numerically, a spectral-element code is used to obtain the axisymmetric base flow fields, while experimentally, results are obtained for a similar set of geometries, using water as the working fluid. At low Reynolds numbers, the flow is steady and characterized by a jet flow emanating from the contraction, surrounded by an axisymmetric recirculation zone. The effect of a variation in blockage size on the onset and mode of instability is investigated. Linear stability analysis is performed on the simulated axisymmetric base flows, in addition to an analysis of the instability, seemingly convective in nature, observed in the experimental flows. This transition at higher Reynolds numbers to a time-dependent state, characterized by unsteadiness downstream of the blockage, is studied in conjunction with an investigation of the response of steady lower Reynolds number flows to periodic forcing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available