4.7 Article

An experimental investigation of mixing mechanisms in shock-accelerated flow

Journal

JOURNAL OF FLUID MECHANICS
Volume 611, Issue -, Pages 131-150

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112008002723

Keywords

-

Ask authors/readers for more resources

An experimental investigation of mixing mechanisms in a shock-Induced instability flow is described. We obtain quantitative two-dimensional maps of the heavy-gas (SF6) concentration using planar laser-induced fluorescence for the case of a shock-accelerated cylinder of heavy gas in air. The instantaneous scalar dissipation rate, or mixing rate. X, is estimated experimentally for the first time in this type of flow, and used to identify the regions of most intense post-shock mixing and examine the underlying mechanisms. We observe instability growth in certain regions of the flow beginning at intermediate times. The mixing rate results show that while these unstable regions play a significant role in the mixing process, a large amount of mixing also occurs by mechanisms directly associated with the primary instability, including gradient intensification via the large-scale strain field in a particular non-turbulent region of the flow.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available