4.5 Article

Drug resistance mechanism of the fish-pathogenic bacterium Lactococcus garvieae

Journal

JOURNAL OF FISH DISEASES
Volume 31, Issue 6, Pages 461-468

Publisher

WILEY
DOI: 10.1111/j.1365-2761.2008.00927.x

Keywords

chemotherapeutics; drug resistance; Japan; Lactococcus garvieae; minimum inhibitory concentrations; transferable R-plasmid

Ask authors/readers for more resources

The minimum inhibitory concentrations (MICs) of 15 chemotherapeutic agents were tested against 146 Lactococcus garvieae strains isolated from 1999 to 2006 in Japan. The agents used included chloramphenicol, ciprofloxacin, erythromycin (EM), enoxacin, fleroxacin, florfenicol, kanamycin, lincomycin (LCM), norfloxacin, oxolinic acid, orbifloxacin, ofloxacin, benzylpenicillin, streptomycin and tetracycline (TC). Of the tested strains, 46 showed high levels of resistance to EM, LCM and TC. Twelve of these strains were detected to be carrying transferable R-plasmids using a conjugation experiment and, using Southern hybridization, were shown to have the same structure as the R-plasmid. The remaining 34 resistant strains had a similar DNA structure to that of the R-plasmid as confirmed by polymerase chain reaction (PCR) using primers designed from sites in the transferable R-plasmid. The EM and TC resistance genes were classified into the ermB and tetS groups using PCR. We also detected gyrA and/or parC mutants that are highly resistant to old and new generation quinolones. This study revealed that transferable R-plasmids encoding EM, LCM and TC are widely distributed and are conserved regardless of the area and/or time of collection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available