4.4 Review

Red muscle proportions and enzyme activities in deep-sea demersal fishes

Journal

JOURNAL OF FISH BIOLOGY
Volume 83, Issue 6, Pages 1592-1612

Publisher

WILEY
DOI: 10.1111/jfb.12268

Keywords

citrate synthase; locomotion; metabolic adaptation; Monterey Bay; visual interactions hypothesis

Funding

  1. NSF [OCE 0727135]

Ask authors/readers for more resources

Owing to the paucity of data on the red muscle of deep-sea fishes, the goal of this study was to determine the proportions of red muscle in demersal fishes and its enzymatic activities to characterize how routine swimming abilities change with depths of occurrence. Cross sectional analysis of the trunk musculature was used to evaluate the proportion of red muscle in 38 species of Californian demersal fishes living at depths between 100 and 3000m. The activity of metabolic enzymes was also assayed in a sub-set of 18 species. Benthic fishes had lower proportions of red muscle and lower metabolic enzyme activities than benthopelagic species. Mean proportion of red muscle declined significantly with depth with the greatest range of values in shallow waters and species with low proportions found at all depths. This suggested that while sedentary species occur at all depths, the most active species occur in shallow waters. Citrate synthase activity declined significantly with depth across all species, indicating that the mass-specific metabolic capacity of red muscle is lower in deep-sea species. These patterns may be explained by coupling of red and white muscle physiologies, a decrease in physical energy of the environment with depth or by the prevalence of anguilliform body forms and swimming modes in deep-living species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available