4.6 Article

The impact of source contribution uncertainty on the effects of source-specific PM2.5 on hospital admissions: A case study in Boston, MA

Journal

Publisher

SPRINGERNATURE
DOI: 10.1038/jes.2014.7

Keywords

fine particles; uncertainty propagation; source apportionment; emergency hospital admissions; Medicare

Funding

  1. US Environmental Protection Agency (EPA) [FP-9172890-01]
  2. EPA [RD 83479801, R834894]
  3. National Institute of Environmental Health Sciences [R01 ES012054, T32 ES007069, R01 ES019560, R21 ES020152, R21 ES021427]
  4. Health Effects Institute [HEI 4909]
  5. EPA [150217, R834894] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Epidemiologic studies of particulate sources and adverse health do not account for the uncertainty in the source contribution estimates. Our goal was to assess the impact of uncertainty on the effect estimates of particulate sources on emergency cardiovascular (CVD) admissions. We examined the effects of PM2.5 sources, identified by positive matrix factorization (PMF) and absolute principle component analysis (APCA), on emergency CVD hospital admissions among Medicare enrollees in Boston, MA, during 2003-2010, given stronger associations for this period. We propagated uncertainty in source contributions using a block bootstrap procedure. We further estimated average across-methods source-specific effect estimates using bootstrap samples. We estimated contributions for regional, mobile, crustal, residual oil combustion, road dust, and sea salt sources. Accounting for uncertainty, same-day exposures to regional pollution were associated with an across-methods average effect of 2.00% (0.18, 3.78%) increase in the rate of CVD admissions. Weekly residual oil exposures resulted in an average 2.12% (0.19, 4.22%) increase. Same-day and 2-day exposures to mobile-related PM2.5 were also associated with increased admissions. Confidence intervals when accounting for the uncertainty were wider than otherwise. Agreement in PMF and APCA results was stronger when uncertainty was considered in health models. Accounting for uncertainty in source contributions leads to more stable effect estimates across methods and potentially to fewer spurious significant associations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available