4.7 Article

Therapeutic targeting of NOTCH signaling ameliorates immune-mediated bone marrow failure of aplastic anemia

Journal

JOURNAL OF EXPERIMENTAL MEDICINE
Volume 210, Issue 7, Pages 1311-1329

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1084/jem.20112615

Keywords

-

Funding

  1. National Institutes of Health [P01 AG025531]
  2. Aplastic Anemia & MDS International Foundation, Inc.
  3. Charles H. Hood Foundation for Child Health Research
  4. American Heart Association

Ask authors/readers for more resources

Severe aplastic anemia (AA) is a bone marrow (BM) failure (BMF) disease frequently caused by aberrant immune destruction of blood progenitors. Although a Th1-mediated pathology is well described for AA, molecular mechanisms driving disease progression remain ill defined. The NOTCH signaling pathway mediates Th1 cell differentiation in the presence of polarizing cytokines, an action requiring enzymatic processing of NOTCH receptors by gamma-secretase. Using a mouse model of AA, we demonstrate that expression of both intracellular NOTCH1(IC) and T-BET, a key transcription factor regulating Th1 cell differentiation, was increased in spleen and BM-infiltrating T cells during active disease. Conditionally deleting Notch1 or administering gamma-secretase inhibitors (GSIs) in vivo attenuated disease and rescued mice from lethal BMF. In peripheral T cells from patients with untreated AA, NOTCH1(IC) was significantly elevated and bound to the TBX21 promoter, showing NOTCH1 directly regulates the gene encoding T-BET. Treating patient cells with GSIs in vitro lowered NOTCH1(IC) levels, decreased NOTCH1 detectable at the TBX21 promoter, and decreased T-BET expression, indicating that NOTCH1 signaling is responsive to GSIs during active disease. Collectively, these results identify NOTCH signaling as a primary driver of Th1-mediated pathogenesis in AA and may represent a novel target for therapeutic intervention.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available