4.7 Article

Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon

Journal

JOURNAL OF EXPERIMENTAL MEDICINE
Volume 209, Issue 1, Pages 139-155

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1084/jem.20101387

Keywords

-

Funding

  1. Division of Intramural Research, NIAID

Ask authors/readers for more resources

Dendritic cells (DCs) and macrophages (MPs) are important for immunological homeostasis in the colon. We found that F4/80(hi)CX3CR1(hi) (CD11b(+)CD103(-)) cells account for 80% of mouse colonic lamina propria MHC-IIhi cells. Both CD11c(+) and CD11c(-) cells within this population were identified as MPs based on multiple criteria, including an MP transcriptome revealed by microarray analysis. These MPs constitutively released high levels of IL-10 at least partially in response to the microbiota via an MyD88-independent mechanism. In contrast, cells expressing low to intermediate levels of F4/80 and CX3CR1 were identified as DCs based on phenotypic and functional analysis and comprise three separate CD11c(hi) cell populations: CD103(+)CX3CR1(-)CD11b(-) DCs, CD103(+)CX3CR1(-)CD11b(+) DCs, and CD103(-)CX3CR1(int)CD11b(+) DCs. In noninflammatory conditions, Ly6C(hi) monocytes (MOs) differentiated primarily into CD11c(+) but not CD11c(-) MPs. In contrast, during colitis, Ly6C(hi) MOs massively invaded the colon and differentiated into proinflammatory CD103(-)CX3CR1(int)CD11b(+) DCs, which produced high levels of IL-12, IL-23, iNOS, and TNF. These findings demonstrate the dual capacity of Ly6C(hi) blood MOs to differentiate into either regulatory MPs or inflammatory DCs in the colon and that the balance of these immunologically antagonistic cell types is dictated by microenvironmental conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available